MNRAS 430, 2986-2998 (2013) doi:10.1093/mnras/stt105

Super-Nyquist asteroseismology with th&epler Space Telescope

Simon J. Murphy;* Hiromoto Shibahashiand Donald W. Kurtz

1Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK
2Department of Astronomy, The University of Tokyo, Tokyo 113-0033, Japan

Accepted 2013 January 15. Received 2013 January 15; in original form 2012 November 5

ABSTRACT

Barycentric corrections made to the timing<dplerobservations, necessitated by variations in
light arrival time at the satellite, break the regular time-sampling of the data — the time stamps
are periodically modulated. A consequence is that Nyquist aliases are split into muItipIet@
that can be identified by their shape. Real pulsation frequencies are distinguishable from
these aliases and their frequencies are completely recoverable, even in the super—Nyq@t
regime, i.e. when the sampling interval is longer than half the pulsation period. We provide a8
analytical derivation of the phenomenon, alongside demonstrations with simulated and regl
Keplerdata fors Sct, roAp and sdBV stars. F&eplerdata sets spanning more than &@pler
orbital period (372.5d), there are no Nyquist ambiguities on the determination of pulsatio
frequencies, which are the fundamental data of asteroseismology.

Key words: asteroseismology —methods: data analysis —stars: oscillations — stars: variable
8 Scuti—stars: variables: general.

selected so that the known plausible frequency range for the type of
star lies in the range [Oyy], and the infinity of ambiguous higher
Itis well known that all light emitted or received is Doppler shifted frequency Nyquist aliases are ignored as unphysical.
by the motion of the emitting or receiving body. In astronomy the However, it is not possible to adjust the observing cadence for
Doppler shift from the emitting body is used to deduce radial veloc- Kepler mission data to accommodate the study of pulsating stars
ity; the Doppler shift of the receiving body, the Earth, is removed in different frequency regimes. Theepler mission’s prime goal
from the observations by correcting the times of observation to of detecting Earth-like planets in the habitable zone led to a design
the Solar System barycentre. All of this is standard practice. The whereKeplerdata are available in two cadences: long-cadence (LC)
Doppler shift from emitting bodies has traditionally been used to at 29.43 min, and short-cadence (SC) at 58.85s, with correspond-
deduce orbital motion for binary stars and for exoplanets with spec- ing Nyquist frequencies of 24.469 and 734.07 despectively. The
troscopic radial velocities, and with — C analyses in the cases of  number of SC observing slots is limited to 512 by telemetry con-
binary pulsars and orbiting pulsating stars (Hulse & Taylor 1975; straints, and most of those observing slots are needed for higher
see also Sterken 2005b). Recently, Shibahashi & Kurtz (2012) havetime resolution studies of exoplanet transits. With this limitation
shown how this orbital Doppler shift can be seen directly in the most classical pulsators observed Kgpler have used LC, even
Fourier transform of light variations in binary pulsating stars and though many such pulsators — suchs&&ct, roAp, sdBYV, pulsating
used to derive the mass function without the need of spectroscopicwhite dwarf ands Cep stars — have pulsation modes with frequen-
observations. Now, we show here, both analytically and in practice, cies that can exceed the LC Nyquist frequency. Murphy (2012)
that the Doppler shift at the receiving body — in this caseKkbe showed some of the difficulties encountered with Nyquist aliases
pler Space Telescopeallows the unique identification of periodic ~ when studying Sct stars witlKeplerLC data; Dawson & Fabrycky
frequencies in the emitting body without any Nyquist ambiguity. ~ (2010) did the same for planet searches with radial velocity data.
The Nyquist frequency of equally spaced data represents an upper Now, we show in this paper how the correction of the times of
limit on a range of frequencies over which a Fourier transform is observations oKeplerdata to the Solar System barycentre gener-
unique. Itis well defined &y = 1/(2At), whereAt s the sampling ates a time-dependent Nyquist frequency, and that this completely
interval between two consecutive points; this is also known as the removes all Nyquist alias ambiguities in the amplitude spectrum.
‘cadence’ of the data. In perfectly equally spaced data there is For data sets longer than okeplerorbit, true pulsation frequencies
an infinity of frequencies that fit the data equally well. External can always be distinguished from all Nyquist aliases. The observing
physical constraints are mandatory to select the frequency rangecadence foKeplerdata is not a barrier to asteroseismic modelling of
that is appropriate for pulsating stars. Commonly, the cadence is pulsation frequencies because of Nyquist ambiguity —there is none.
In practice, of course, higher frequencies have reduced amplitude
* E-mail: smurphy6@uclan.ac.uk with LC data (see Murphy 2012), and that affects the signal-to-noise
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ratio, which decreases with increasing frequency. Thus, as stated bywhere
Eyer & Bartholdi (1999), in the irregular-sampling case, the fre- ES
guency limit becomes dominated by exposure time (and intrinsic F(w) = /
amplitude), not sampling rate, where wikbplerthe effective expo- ) o ) ]
sure time is 91 per cent of the sampling interval for both cadences. i the Fourier transform of the continuous functidf) and

The Keplerspacecraft is in a 372.5d, heliocentric Earth-trailing 1 X
orbit. Four times per orbit the satellite must perform a roll to keep Wy (w) = Vo1 Z exp(iwt,). (4)
its solar panels facing the Sun, so the data are divided into quarters 1=
(denoted Qn) and a brief gap in observations occurs. In addition to Here, we have used the following expression of the delta function:
the data downlink that takes place at each quarterly roll, two more o
downlinks occur at approximately 30-d intervals in the middle of §(;) = / exp(—iw?) dw. (5)
each quarter, effectively dividing the data into three ‘months’ per J—o0
quarter (thus denoted Qnfor SC data). These events represent  That is, the Fourier transform of discretely sampled data is equal to
the most frequent gaps Kepler data which are otherwise nearly  the convolution of the Fourier transform of the original continuous
continuous at their micromagnitude precision. Other gaps due to function and the window function. If we assumg) = cos (at +
occasional safe-mode events have occurred, and we refer the readep), i.e. pulsation with a single mode of angular frequengy re-

x(t) exp(iwt) dt 3)

o0

to the Data Characteristics Handbéd& more information. How- garding this as a model of a pulsating star, then
ever, the important property of the observations with respect to the
gaps is that observations are always taken at regular intervals ac-F (o) = = {§(w + wo) + §(w — wo)} . (6)

cording to the spacecraft’s clock, which can be expressed as some
integer product withAt from some (fixed) arbitrary start time, i.e.  Thus the Fourier transform of the sample sefigéw) consists of a
t, = to + NAL. In this regard, th&eplerdata may be described as ~ Superposition of the shape of the window spectrum, shiftetidy.
equally spaced.

Tin_win_g onb.oard the spacecratft is in Julian Date, but the space- 2.1.2 The case of a uniform cadence
craft is in orbit around the Solar System’s barycentre and as such

the arrival times of photons from th¢eplerfield are shifted sea- If the sampling is taken with a uniform cadence with a time interval
sonally by up ta200 s from those of the Solar System barycentre. At, thent, =ty + nAt, and

Although data are _s_ampled regularly onboard, the time sta_lmps are 1 [sn{(N + D)wAt/2)

subsequently modified when converted into Barycentric Julian Date |Wx (w)| = N1 Sin(whr/2) (7)
(BJD) and hence become irregularly sampled: no longer can the ob-

servation times be represented in the fdgrs to + nAtfor integer The window spectruniMy(w)| has a series of sharp, high peaks at
values ofn. The effect on super-Nyquist frequencies has been ob- @ = Nws, where

served by Baran et al. (2012), and described as a ‘smearing’ of the 21

frequencies. In this paper we show how the satellite motion results “s = A7 (®)

in multiplets being generated out of the Nyquist aliases, and how
this can be used to distinguish these aliases from real pulsation
frequencies.

andn denotes integers (see Fig. 1). Theg(w) has sharp peaks
atw = nws £ wg. These apparent multiple peaks are the Nyquist
aliases, and they look identical except for their frequencies.

The peakin the range of [@s/2] corresponds to the true angular

2 ANALYTICAL DERIVATION frequency as long as 2w< ws (here, we takevg > 0). Hence,

2.1 Discrete Fourier transform 10 : : : :
N=10

2.1.1 General description i i i N=100 —f—
Let us consider first a general case of discrete d&f)}, which 0.8 [ [ R (N
can be regarded as the following function of any value of
xn(t) =) x()8( — 1), @) ;Z

n=0 =04 Foiee e ]
wherex(t) on the right-hand side is a continuous functiég,— t,)
is Dirac’s delta function and the number of measuremenis-is
1. It is well known that the Fourier transform gr{(t) is expressed 0.2 i —
as a convolution of the Fourier transformx{f) and the sampling
window spectrunWy (a)): 0.0 fy oY Aib, ol h P, aflih, ey

1 1 i 00 05 10 15 20 25 30 35 40 45
—F = — t) exp(ior) dt wAt/2)/n
) N+1/,0 x() explic) (AU2)
= (F % Wy)(o), 2) Figure 1. The sampling window spectruliviy(w) in the case of sampling

with a constant time interval. The abscissaviat/(277), where At is the

sampling time interval. The red curve shows the ca$é-6f100 data points,
1LC data are not separated into different files around these months like the while the green curve shows the cas&lef 10. The window function shows
SC data are, but the gaps are still present. conspicuous peaks at= nws, wherews = 271/ At is the sampling angular
2 Available at http://keplergo.arc.nasa.gov/Documentation.shtml frequency anch denotes integers.
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for a given angular frequenayy, if we select the sampling rate Stm‘
At < (2m/wo)/2, we can identify uniquely the true frequency from
the Fourier transform of the sampled data. This conditionok
(21/wp)/2 is a sufficient condition for unique identification of the
true frequency, not a necessary condition.

Now let us consider a case that the sampling rate is given in ad-
vance. In this case, if the true angular frequency is lower tha,
the lowest frequency peak of the Fourier transform of the sampled
data gives the true angular frequency. Note that this is again a suffi-
cient condition, not a necessary condition. The Nyquist frequency
is this frequency limit, under which we can identify uniquely the
true angular frequency:

fay = los 1 ) Z Sun
VT 22n T 2ar

The reason why the true frequency is not uniquely identified .
without external constraints in the case of sampling with a uniform eq Imnox

cadence is the fact that all the Nyquist aliases look identical and are
|nd|st!ngw_shable. Inversely, if we could _dlstlr_lgwsh_ the individual Figure 2. A schematic picture showing geometric relations among the
Nyquist aliases, we would be able to identify uniquely the true Egarth, the Sun and the star. The Sun is moving around the Earth on the
frequency even ifog > ws/2. We will see in the case ¢feplerdata ecliptic plane. The geocentric ecliptic longitude is measured from the vernal
this is indeed possible. equinox. The star’s position is (), and the geocentric ecliptic longitude

of the Sun i\ (t). The difference in the path length is shown with a thick

. ) o ) . segment. The path difference is obviously givermess (A— 1)cosg.
2.1.3 Sampling with a periodically modulated time interval

In the case oKepler, observations are taken at regular intervals 600
according to the clock on-board the spacecraft. Data sampling is
made at 400

t, = fo + nAt, (10)

wheren =0, ...,N, andAt s a constant. The LC data hawg =
29.4 min. However, sindéepleris orbiting around the Solar System
barycentre, the resulting annual variation in the distance between§

the stars and the spacecraft leads to modulation in the phase ofe -200
observed stellar pulsation, and the time stamps are converted to
barycentre arrival times. As a consequence, the time stamp interval ~ -400
of theKeplerdata is periodically modulated.

To make the modelling simple, we ignore in this section the -600 '———— A
difference between the barycentre and the heliocentre. Also, we '
approximateKeplers orbit as a circle with a radius af = 1 au.
Then, the arrival time of the light from the star to the spacecraft rigyre 3. The time correction for the case bf= 0°, 8 = 0° (red) and for

delays from that to the heliocentre by the Kepler field-of-view (¢ = 300°,§ = 50°) (green) as a function of the

Sun’s ecliptic longitude. .
8t(t) = 4 cosp cos{in (1) — A}, (11) P 9 ©
C

200

(Ao2) (s)

which is often called the Remer delay, in honour of Ole Rgmer, By taking accqunt of this Iight t_ime effect, thf_aeplerdata are
who discovered observationally the fact that the speed of light is stored as a function of the arrival time at the helioceftre:
finite by comparing the observed timing of the eclipses of Jupiter's _

. . ) e =t, cos(2, — 1), 14
satellite lo with the estimate made at his time (Sterken 2005a). Here, O + 7 cos(S ) (14
A andp are the ecliptic longitude and latitude of the stat(t) is where

the geocentric ecliptic longitude of the Sun andenotes the light _a 1
speed (see Fig. 2). With the present assumption, t= c cosp (15)
ro(t) = Qr — 1), (12) gives the amplitude of modulation of the time stamps ofikhpler

data. The second term on the right-hand side of equation (14) is
the heliocentric time correction. Fig. 3 shows this time correction
(the Rgmer delay) for the field af = 0°, 8 = 0° (red) and for the

where Q = 2n/365rad d! andtg is the vernal equinox passage
time of the Sun. It is instructive to write down here, for later use,
the light time with the equatorial coordinates,

8t(t) = 4 COSA( COSx COSS
¢ 3 strictly speaking, the data are stored as a function of the Barycentric
+ SinA@(COSE sina Coss + sine sing), (13) Dynamical Time (TDB) referenced to the Solar System barycentre. The
difference between the time referenced to the heliocentre and that to the

wherex ands are the right ascension and the declination of the star Solar System barycentre 4 s. The main cause of this difference is the

ande is the obliquity of the ecliptic. acceleration of the Sun due primarily to Jupiter and Saturn.
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Keplerfield-of-view (green). The case gf= 0° gives the maximum
correction;r = 500s. In the case of th€eplerfield, 7 ~ 190s.

2.2 The window spectrum of periodically modulated sampling

Our aimis to carry out Fourier analysis of tieplerdata of pulsat-

ing stars. Since the Fourier transform of the sample s€iés) is

a superposition of the window spectrum, the problem is essentially
what the window spectruiVy (o) = (N + 1)1 exp(ivrg ,)
looks like in the case of periodically modulated sampling. The
problem is then how to treat the terms exp (ezosQ2t) and

exp (iwtsinQt).

2.2.1 Bessel coefficients
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Figure 4. The Bessel coefficient}(¢§) withn=0, ..., 8 foré =[0:5.5].

These terms can be expressed with a series expansion in terms ofhe vertical lines show = nwst (n =0, ..., 8), at which the window

Bessel functions of the first kind with integer order. With the help
of Jacobi—Anger expansions

cos(décosp) = Jo(§) + 2 Z(—l)" J2, (&) cos 2ng (16)
n=1
and
sin(£cosp) = £2) " (—1)" Jarsa(§) cOS(2n+ 1)g, 17)
n=0

we easily obtain the following relations:

cos(P+ £ cosp) = Y (—1)'{Jau(&) COS(?+ 2n¢)

n=—00

F Joup1(E) sin{d + (2n + L)p}) (18)
and

sin(@ £ £ cosp) = Y (—1)"{J2:() SIN(® + 2n¢)

n=-—oo

F Joug1(§) cos{®+ (2n + 1)} (19)

Here J,(&) denotes the Bessel function of the first kind of integer
ordern.

2.2.2 Analytic expression of the window spectrum

By applying these relations, after somewhat lengthy but straightfor-
ward manipulations, we eventually get

(N + 17| Wy ()?
R SIN{(N + L)(w + kQ)At/2}
=2 ‘Jk(””) sin{(@ + kQ)A7/2)

2

k=—00

k=—00 k'=—00

+ [ S Jalwr)Jau(wr)

N At
% cos{ 2(k — k/)QT —2(k — k')A }

/

o0
Z Jar1(wt) a1 (wT)

—00 k'=—00

p>

o0
k=

spectrum has sharp multiplet peaks (see text).

N At
X cos{ 2(k — k’)Q? — 2(k — k') }

+ Z Z Jou (1) Iy 11 (07)

k=—00 k'=—00

x sin[{2w+ [2(k + &)+ 1]1Q} %

—k+K)+ 1},\}]

2

sin{(N + 1)(w + kQ)Ar/2} 20)

sin{(w+ k) Ar/2}
where> " means summation fdt except for wherk' = k. _

The Bessel coefficients of different orders are orthogonal to each<
other (see Fig. 4). Hence, among the terms on the right-hand side,i“

N e /6i0'seuinolployxoseduw;//:dny wol} papeojumoq
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the first term is dominant. Then, g—
1 o

W, ~ —
| Wy(w) | N1 ;
<
ad SiN{(N + 1)(w + kQ)At/2) &
J; - 21 n
% k;oo K1) sin{(w + kQ)At/2) (21) 8

This means that the window spectryiiy(w)| consists of a singlet
sharp peak ab = 0 and multiplets of sharp peaksat= nws +
k2, wheren andk are integers anads = 27t/ At. The amplitude of
each peak is)(nws 7)|, since < ws (see Table 1).

It should be stressed here th§¥\(w)| is highly dependent on
frequencyw throughé = wr, the argument of the Bessel function.
For £ « 1, the dominant term is onlyy(¢) ~ 1 — £2/4 and all
the higher order Bessel functions are negligibly small. However,
with the increase of, the first-order Bessel functioh (¢) comes
larger asJi (&) ~ &£/2, and eventually it becomes larger thi(g)
around¢ ~ 1.5. But the higher order termk(&) for k = 4 are
still negligibly small. This means tha¥(w)| looks like a triplet
with an equal spacing o if < (27)~1. With the further in-
crease of, the second-order Bessel functids(¢) also becomes
non-negligible. As a consequend®y(w)| comes to look like a
quintuplet. This tendency continues further: the high-order Bessel
functions become non-negligible with the increase of herefore,
the individual Nyquist aliases are distinguishable from each other.
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Table 1. The window spectrum.

n k w Amplitude

0 0 0 1

1 0 ws Jo(wsT)
+1 ws + Q Ji(wsT)
+2 ws £ 2Q Jo(wsT)

2 0 2uxs Jo(RwsT)
+1 2ws + Q J1(2wsT)
+2 2ws + 20 Jo(2wsT)
+3 2ws £ 3Q2 J3(2wsT)

3 0 3as Jo(3wsT)
+1 3ws + Q J1(Bwst)
+2 3ws + 2Q J2(3wsT)
+3 3ws + 3Q J3(3wsT)

+4 3ws + 4Q Ja(3wsT)

This characteristic is different from the case of sampling with a
uniform cadence.

2.2.3 Nyquist frequency is no longer the detection limit

We have shown in Section 2.1.1 that the Fourier transform of the dis-
cretely sampled datq(t) is given as the convolution of the Fourier
transform of the original continuous daté) with that of the win-

dow spectrunWi(w). Hence the Fourier transform of discrete data
with a periodically modulated sampling interval essentially con-
sists of multiplets around the Nyquist aliasesVd§(w) at nws +

wo, Wheren denotes integers. It should be noted here that the shape
of the multiplets is independent of the frequency of the moge

as long as the amplitude and the frequency of the mode are stable.

It should also be stressed that only the peak at wg with n =

0 is a single peak, while the other Nyquist aliases are multiplets;
Nws + wo + k2, wheren # 0 andk denotes integers (see Table 2).
Hence, by finding the unique singlet, we can distinguish the true
pulsation frequencyyg, from its Nyquist aliases. Note also that this
feature is true not only for the case ©f< ws/2 but also for the
case ofw > ws/2. That is, a pulsation frequency higher than the
Nyquist frequency, which is still defined as 1/(&n), is uniquely
determined when the sampling rate is periodically modulated, ir-
respective of the number of multiples of the Nyquist frequencies
crossed. The Nyquist frequency is no longer the upper limit of fre-

Table 2. Fourier transform of the data sampled with a
periodically modulated interval.

n Angular frequency Amplitude
-1 —ws + wo Jo(wst)
—ws + wo £ J1(wsT)
—ws + wg £ 22 Jo(wsT)
0 wo 1
ws — wo JO(CUST)
ws — wo £ Q Ji1(wsT)
ws — wo + 2Q Jo(wsT)
1 ws + wo Jo(wst)
ws + wo £ J1(wsT)
ws + wo £ 22 Jo(wsT)
2 2ws — wo Jo(2wst)
2ws — wo £ Q J1(2wsT)
2ws — wo £ 2R J2(2wst)
2ws — wp £ 3Q J3(2wsT)
2 2ws + wo Jo(2wsT)
2ws + wo = Q J1(2wst)
2ws + wo = 2Q J2(2wsT)
2ws + wo £ 32

J3(2wsT)

Table 3. Parameters for th&epler

LC sampling.
Parameters Values
T 2.20x 103d
At 2.10x 10°2d
s 3.02x 10%radd!

Q 1.72x 10 2radd?

wt =[0,2.77]rad. Fig. 4 shows the Bessel coefficigh{a ) with
n=0,...,8forwr =[0, 5.5]. From this figure, it is obvious that
Jn(wt) with n > 8 are negligibly small in this range.

Letus consider the case of LCképler. If we takeAt =30 min=
2.1 x 1072d, then ws = 2n/At = 3.016x 1(Pradd?. Then
wst = 0.663rad. As for the modulatiorf = 27t/365rad d* =
1.72x 10 %rad d !, then2/ws = 5.69 x 10-°. Parameters for the

quency determination in such a case. This has been mathematicallykeplerLC sampling are given in Table 3.

proved here.

2.3 Window spectrum for the Kepler LC data

In the case of th&epler field,  ~ 190s~ 2.20 x 10-3d. For
the range ofv/(2) = [0, 200]d™! (w =[0, 1.26x 10°]rad d™1),

4 For truly irregularly (randomly) sampled data, the lowest frequency above
which real frequencies are truly indistinguishable from aliases is equal to
the reciprocal of the accuracy to which time is measured (Koen 2010).
For Keplerthis is around 10d~1, so we can distinguish aliases from real

frequencies for all frequencies within the star that are physically meaningful.

Fig. 5 shows the dependence pl(w t)sin{(N + 1)(w +
kQ)At/2}/sin{(w + k2)At/2}| onw/ws fork=0, ..., 8. Here,
we assumedll = 10°, i.e. the observational time-span was assumed
to be~5.75yr. In such a case, the high peaks are so sharp that their
self-cross terms dominate over the other cross terms. As seen in
Fig. 5, the high peaks appear as multiplets araurdn ws, where
ws = 27/ At andn denotes integers. The multiplets have the equal
splitting of the orbital frequency} (2/ws = 5.69x 10~%in Fig. 5).

Strictly speaking, each multiplet has infinite peaks. However, the
tiny amplitude peaks are practically undetectable, and each multiplet
looks like a finite number of components; the first Nyquist alias
looks like a triplet, the second looks like a quintuplet and so on.
The degree of the apparent multiplicity becomes higher with the
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Figure 5. The dependence of (¥ 1)1 Jk(w 7)sin{(N + 1)(w + kQ)At/2}/sin{(w + kQ)At/2}| onw/ws, fork =0, ..., 8, wheravs = 277/ Ar. The
colour codes, corresponding to the order of the Bessel coeffidieats in common with Fig. 4. The parameters Ate= 30 min;ws = 3.016x 10?rad d1.
Q = 2m/365radd?; Q/ws=5.69x 1075, t = 190s=2.20x 103 d; wsr = 0.663 radN = 1C°.

increase oh, because the Bessel coefficients with: 0 become
important with the increase af.

The amplitudes of the peaks in the individual multiplet are de-
termined bywst. Sincer ~ 190s~ 2.20x 10°3d, wst = 0.663,
2wst = 1.326, 3wt = 1.989, 4agt

2.652, 5@t

3.315,

B6wst = 3.978, 7Teat = 4.641 and 8gr = 5.304. The Bessel coef-

ficients at these values are graphically seen in Fig. 4.

2.4 Multiplets of the Kepler LC data

It should be stressed here again that only the peak-atwg with
n = 0 is a single peak. The aliases with frequenciess + wo
look like a triplet, while those with 2¢+ wg are a quintuplet. The
aliases associated with 3¢ftws, Sws and 6ag look like a septuplet,
a nonuplet, an undecuplet and a tredecuplet, respectively.

3 EXAMPLES WITH SIMULATED DATA

3.1 Importance of a large observational time-span

With the realKeplerdata we are limited in our observational time-

AsAIUN e /Blosfeulnolpiojxo seluw//:dny wouy papeojumoq

the multiplets into which Nyquist aliases are split. Although these &
simulated data are without noise, it is clear that when one orbit 9__'

(four mission quarters) of data is available, aliases are no longers

single peaks, but are split into sets of partially resolved peaks and%
can thus be distinguished from real peaks (which are neither split%

nor similarly distorted). With two or more orbits, an obvious mul-

(4]

tiplet emerges, but the full width at half-maximum of each peak is §
still large compared to the separation of the multiplet peaks, hence®

the window pattern of each peak can interfere with its neighbours.

Increasing the number of orbits further sharpens the peaks and re-

solves the pattern for comparison with the analytical patterns we

derived, shown in Fig. 5.

3.2 Effect of varying coordinates

It is the barycentric time corrections that cause the splitting of

Nyquist aliases. For a satellite that orbits around the Solar System
barycentre in the ecliptic plane, these time corrections are deter-

mined by the ecliptic latitude of the target star, because this de-
termines the difference in light arrival time at the satellite and the
span by the length of the mission thus far. Stars that have beenbarycentre. We show how the multiplet shape changes with varying
observed continuously since the mission began will have been cov-ecliptic latitude in Fig. 7. In the more familiar celestial coordinates,

ered for three complete orbits of the satellite, at the time of writing. both right ascension and declination affect the ecliptic latitude, so

However, with simulated data we are not so restricted. In Fig. 6 we we expect the arrival times and thus the multiplet shape to change
show the importance of a large observational time-span on resolvingwhen either coordinate is varied. Since neither of these coordinates
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Figure 6. Simulated data showing the frequency resolution achieved with
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Figure 7. Variation in multiplet shape for changing ecliptic latitude. Note
that, because the ecliptic is inclined to the equator, varying either right

different numbers of orbits of the satellite. For short observational time- 45cension or declination will change the ecliptic latitude. At an ecliptic
spans, the window pattern of each member of the multiplet distorts the |44itde of 90, a single peak is seen because there is no longer any difference

shape of its neighbours. Calculated Keplerfield coordinates, at the first

Nyquist alias of a 10d! pulsation frequency.

in light arrival time. Calculated for 20 orbits, at the first Nyquist alias of a
10d-! pulsation frequency.
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changes greatly over théeplerfield, the multiplet shape is almost  as with the case we present here: that of KIC 6861400. We used
identical, too. the LC data from quarters 1 through 9 (Q1-9), which have been
processed with the PDC-MAP pipeline (Smith et al. 2012; Stumpe
et al. 2012). The star features three independent mode frequencies
and many harmonics of the two mode frequencies with the highest
amplitudes. We applied a pre-whitening procedure, in which the
frequencies are fitted with least-squares routines and subtracted
We now compare our theory with reepler data by examining from the data in the time domain, to all harmonics and kept only
the case of a high-amplitude Sct (HADS) star. These stars are the highest amplitude mode of the three, leaving a single, high-
the main-sequence counterparts to the classical Cepheids, havinggmplitude peak to make our example. No data points were deleted.
large amplitudes and normally few pulsation modes — often the = As expected, there is one alias in each frequency rangg [nf+
fundamental radial mode alone or with the first radial overtone. 1)f\y] (upper panel, Fig. 8), for integer Even values afi, counting
Sometimes harmonics of the frequencies of these modes are seerfrom n = 0 at 0d™?, are multiples of the sampling frequency. In

4 SUPER-NYQUIST ASTEROSEISMOLOGY

4.1 Demonstration with real data
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Figure 8. The upper panel shows the frequency distribution of Nyquist aliases. In the lower panels, which are all to the same scale in frequency and amplitude
the left-hand column shows the real peak, as labelled in the upper panel, and its window function. Panels (a)—(d) show aliases (also labelled in the upper pane
and their relationship to theamplingfrequency and the real frequency. The pattern of the number of peaks.a function of the coefficient of the Nyquist
frequency straddledy, is apparentp = 2n + 1. As such, there are three peaks atfs + fr, three affs — fg, five each at Zf + fgr and so on, as shown in

Fig. 5. The example shown is KIC 6861400, using Q1-9 PDC-MAP data.
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Figure 9. In the left-hand panel, the SC (top) and LC (bottom) data are displayed. LC Nyquist frequency and sampling frequency are represented with vertical
orange lines. The LC data lying above their Nyquist frequency are coloured magenta; those below are red. There are Nyquist aliases in the LC data wher
real peaks have been aliased across the Nyquist frequency. By comparison with the SC data, we can see these aliases have no real partner in the SC @ata.
example of this is the alias peak labelled ‘a’, corresponding to the real peak labelled ‘r' — there is no peak in the SC data at the same frequency as peak ‘&. W
zoominon ‘a’and ‘r' from the LC data in the right-hand panel. The real peak takes on the typical sinc-function shape as expected in the Fourier transform@_‘he
effect of periodically modulated sampling, however, is that the aliased peak is split into a multiplet, provided the time-span of the data is at least one comﬁete
Keplerorbit. The example given is theSct star KIC 8590553. SC data cover Q4.3 only, but LC data are from QO to 9. 3

dny wou

Fig. 8, two peaks straddle each of these, and are identical in theexist in the data (Koen 2010). It has been argued that SC data are
Fourier transform. For this reason, only the peak to the left of each required to study thé Sct stars so that this problem of overlapping
multiple of the sampling frequency is presented in the lower panels real and aliased frequencies is removed, because the SC Nyquist
for a closer look. The multiplet structure is clearly present in all frequency is so much higher than the LC one. With a periodically g
but the real peak, which is represented by a unique singlet peak.modulated sampling, however, one can use the shape of a peak toS
The spacing in the multiplets is approximately equal to the orbital determine whether itis real or aliased. Fig. 9 shows how a real peak ‘o
frequency of the satellite, but due to the small number of orbits exists as a single peak in the Fourier transform, but a Nyquist alias
covered (2.25), the frequency resolution is insufficient to separate will be a multiplet (resolved or not) split by the satellite’s orbital
fully the window patterns of the members of the multiplets. The frequency.
window pattern of each peak of the multiplet thus interferes with ~ Use of this technique to distinguish Nyquist aliases opens up
neighbouring multiplet members, and distorts the shape somewhat,asteroseismic possibilities for maiepler targets that have been
as we showed in Fig. 6. observed in LC only. With data sets that have time-spans greater
As the frequency increases when we study consecutive aliasesthan oneKepler orbital period there is no Nyquist ambiguity in
of highern, the argument to the Bessel functions is also higher selecting the true pulsation frequencies for all types of pulsating
and the higher order (high&) terms become more significant. As  stars. While there are still benefits of SC over LC data (Murphy
such, the number of peaks seen increases. The amplitudes of th&012), the SC data are not needed to resolve Nyquist aliases.
more distant members of the multiplet increase — we begin to see
the expected quintuplets, septuplets and so on (cf. Section 2.4), as .
these peaks’ amplitudes climb above the noise level. The amplitude4'3 Beyond the Nyquist frequency
ratios of the peaks with respect to each other also change. In panelThe rapidly oscillating Ap stars are a population of chemically
(a), the central peak is dominant, but it is absent in panel (c), where peculiar A-type stars that pulsate with frequencies much higher than
only the window pattern of the first-order sidelobes can be seen in § Sct stars — frequencies between about 70 and 2504k such,
its place. The amplitudes of the Bessel orders that determine thesevhen viewed with LC data, these pulsations are many multiples of
peaks’ amplitudes were shown as a function of frequency in Fig. 5. the Nyquist frequency away from falling into the rangeffg]. Itis
The frequency dependence of the shape of the multiplet is on thestill possible, however, to identify the true frequengy & wo/2m)
sampling frequency straddled, only. The multiplet generated at the of the pulsations with LC data, even though the sampling period is

SeluL/
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first Nyquist alias of a pulsation frequency at 26 dooks exactly much longer than the pulsation period, if the Fourier transform is
the same that of a 10-d frequency, and so on. Only tfiequency calculated over a frequency range that incluiges
of the alias changes, not the multiplet shape. We present an example in Fig. 10 using the star KIC 10195926,

whose roAp pulsations have periods among the longest known
and whose frequency spectrum features an oblique dipole mode
at ~84d! that is rotationally split into a septuplet (Kurtz et al.
The difficulty in observing Sct stars withKepleris that the typical 2011). We have run a high-pass filter on the data to pre-whiten the
pulsation frequency range ¢f Sct stars spans both sides of the low frequency content. Thus the Q1-11 LC data presented contain
LC Nyquist frequency. Those pulsation frequencies above the LC only the high-frequency pulsation. With this figure we present a few
Nyquist frequency are aliased to lower frequencies in the Fourier final examples of the application of the technique to LC data.
transform, meaning that they overlap with the real peaks. Distin-  First, it is clear that despite being substantially higher in fre-
guishing these aliases from the real peaks is impossible with dataquency than the Nyquist frequency, the real peak is recoverable and
that are truly equally spaced in time (cf. Section 2.1.2), even if gaps frequency analysis can be conducted without SC data. Secondly,

4.2 Distinguishing real peaks from Nyquist aliases
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Figure 10. In this example of the roAp star KIC 10195926, a real multiplet of peaks appears arount] &d is shown zoomed in the top right-hand panel.

The many aliases thereof are visible along with the real multiplet in the top left. The Nyquist frequency and its integer multiples are indicated as vertical orange
lines. In the lower panels, we demonstrate the effect of periodically modulated sampling on the shape of the highest amplitude peak in each dipole-mod
multiplet, all to the same scale. The real peak (far-left, top) has the typical sinc-function shape, even in these LC data and well beyond the Nyquist frequenc
It can be compared to the window function in the far-left, bottom panel. The remaining lower panels, (a)—(f), correspond to labels in the upper panel, and ar
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in frequency order, clockwise. The data are Q1-11 LC data. See the text for further explanation.

peaks with the same relationship to the sampling frequency, i.e. thethe validity of our theory that we can see so many orders of each
multiplet. Specifically, panel (e) of Fig. 10 corresponds to the fifth

pairs matchingnfs & fg, are split into multiplets of the same shape,
e.g. the multiplets corresponding tas2f fr and 2§ + fr have the
same shape, as is seen by comparing the lower panels (a) and (f)be visible. We plot blue circles at intervals of (1/372.5}d.e. the

Thirdly, even though the peaks have low amplitudes (being only orbital frequency, from the central component of the multiplet. Each
about an order of magnitude higher in amplitude than the noise), multiplet member can be seen to lie at its predicted position, be-
neath a blue circle. There are 11 blue circles, and all but the leftmost

it is a testament to the quality &feplerdata and confirmation of

111.720 111.730 111.740

Nyquist alias. We thus expect 5n1 = 11 equally spaced peaks to
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one corresponds to a clear multiplet member. This leftmost member 0.30 , , , . ; . . . ;
is of low amplitude, barely above the noise level and is therefore
not resolved from another noise or window-pattern peak. Its coun- : i : : : : : :
terpart, under the rightmost blue circle, is identifiable. Ifwe had a __ 020 | i
longer observational time-span the peaks would sharpen and cross=

015 |t

talk between their window patterns would decrease, likely leading ez : B
to the final unresolved member becoming more distinguished. = 010 o .

0.05 ffird .
4.4 Distinction from other modulation 0.00

Periodic amplitude and frequency modulation of a stellar pulsation 0

signal both generate multiplets in the frequency domain. The crit-
ical factor that distinguishes the Nyquist aliases we describe heregigyre 11. The window spectrum for the lowest Nyquist aliasiat ws
from frequency modulation multiplets in binary stars as described of the KeplerSC data.

by Shibahashi & Kurtz (2012), or amplitude modulation multiplets

that are seen in, for example, roAp stars and Blazhko RR Lyrae Frequency (d")

stars, is that the Nyquist alias multiplets are split by exactly the 1383.0 1383.5 1384.0 1384.5 1385.0
Kepler orbital frequency (1/372.5d), within the frequency resolu- S0E ‘ ‘ ‘
tion. It is exceedingly unlikely that other targets will have the same W
modulation frequencies, hence show the same splitting. In the un-
likely event that such a coincidental frequency were found in some = 30§
star, then careful examination of the sidelobe amplitudes and phases;é E
would clearly distinguish the cases. Section 2 provides all the neces-g
sary information, should amplitude and phase need to be examined<
in this rare case.

o/ wg
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5 APPLICATION TO THE KEPLER SC DATA

In the case oKepler SC data, the sampling time interval is much
shorter (at 58.9s) than in LC mode. Hence in SC we haye=
9.217x 1CPrad d!, and thenvst = 20.3rad and2/ws = 1.866x
1078. The SC Nyquist frequency is 734.07'd= 8496.18uHz).

Since the argument of the Bessel coefficientst, is 30 times ok
largerinthe case dfeplerSC than that of LC, the multiplet becomes :
much higher order even in the case of the lowest Nyquist alias, and
also the amplitude of each peak shrinks as the power is distributed
into more peaks. In the case of the lowest Nyquist alias, atws,
the multiplicity is as high as 50, and the amplitude is reduced to Figure 12. The Nyquist alias ofKepler SC data of the roAp star
about 20 per cent of that of the true peak since the amplitude of the KIC 10195926. The frequency of this aliasfis — fr. The upper panel
Bessel coefficientd(£) asymptotically decreasesag?2/(n&)] 2. shows what the mode looks like as a whole. The region delimited by the
This means that, in the casekeplerSC, each of the Nyquist aliases dashed red lines is shown in the lower panel, zooming in on the ‘forest’.
in the power spectrum looks like a ‘forest’ of peaks, while the true
peak is a singlet five times higher in amplitude than the ‘forest’.  As seen in this zoomed-in plot, the shape of the ‘forest’ matches
Hence the singlet true peak looks obviously and conspicuously reasonably well with the expected window spectrum shown in
different from the aliases, irrespective of whether the true frequency Fig. 11, in particular, for the right half (on the left some peaks
is higher or lower than the Nyquist frequency. The true peak should are unresolved in the real data) the relative amplitudes of each peak
be more easily distinguished than in the LC case. fit well with the expectation, as does the amplitude ratio of the

Fig. 11 shows the window spectrum for the lowest Nyquist alias at alias to the true peak: the multiplet has amplitudes that range from
o = ws inthe case oN = 10°. Most of the peaks therein are as short around 30umag for the unresolved part to 48nag for the right-
as 20 per cent of the true peak, whose amplitude is normalized ashand side, while the amplitude of the true peak in the Q6-12 SC
unity, or much shorter. The multiplet would look like an unresolved, data is 168umag. The anticipated amplitude reduction to around
broad-band plateau if the resolution were lower. 20 per cent is confirmed.

As areal example, we show in Fig. 12 the alias peak inthe SC data We provide one more example: that of aliasing of a pulsation
of our previous roAp star example. The upper panel demonstratesfrequency above the SC Nyquist frequency. We use the subdwarf
the appearance of the oblique dipole mode in the frequency rangeB star KIC 10139564 that was examined by Baran et al. (2012).
beyond the Nyquist frequency. One can see that the Nyquist aliasedn this star, non-linear combinations of mode frequencies lead to
are at least six in number, where the seventh is at the noise level.combination frequencies above the SC Nyquist frequency. It should
Each peak looks like a thick pillar. That these are aliases is obvious be stressed that these frequencies are still real frequencies that de-
because there is a forest where there would be a single peak if wescribe the light variations of the star. Baran et al. correctly identified
were looking at the real pulsation frequency. The dashed red linesaliases of a few of these in their fig. 20. The aliases identified were
in the upper panel show the region that is plotted in the lower panel. of the formfg — fs, and their Fourier calculations were based on

Amplitude (umag)

P TatRRITI IATRRRTAN] INTTRRNIRA NRRRTRARI ARURRRTIN

0 ‘ ‘
1384.06 1384.10 1384.14 1384.18 1384.22
Frequency (d'l)
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Figure 13. Horizontally adjacent panels have the same amplitude scale; vertically adjacent panels cover the same frequency region. All panels are to th
scale in frequency. The tall peak of panel (a) is thg ¥f Baran et al. (2012), and is pre-whitened in the lower parelk;. The Fourier transform is calculated
onKeplerQ5-12 SC data, processed with pipeline version 8.0/8.1. Further explanation is provided in text.

an

626 000 data points covering 462.5d of SC data. Here, we extendcan be distinguished from real peaks, even (and indeed especially
the analysis to 10data points covering 739d. in this very high frequency regime.
In addition to the combination frequencies at 995.43 de-
ported by Baran et al. (2012), lies a Nyquist alias centred at
995.31 d*. This frequency to which this Nyquist alias belongs was
pre-whitened by those authors (identified therkgs 472.855 d') 6 CONCLUSIONS
and so its Nyquist alias does not appear in their fig. 20. We presentThe barycentric time corrections appliedKepler data break the
the situation in Fig. 13. regularity of the time interval between consecutive observations — g
Panel (a) shows§’ of Baran et al. (2012). In lower panels only,  Keplerdata are not equally spaced in time. For data spanning at least™
f1g has been pre-whitened. Its Nyquist ali&s— f1g, is the broad one orbital period, periodically modulated sampling causes multi-
forest in panel (b), of substantially lower amplitude than the real plets to be generated out of Nyquist aliases, whereas real peaks
peak, and in accordance with our theoretical expectations regardingremain as singlets, irrespective of whether they lie above or below
both location in frequency and reduced amplitude. Also visible the Nyquist frequency. Multiplicity of the Nyquist aliases, along
on the right of panel (b) are some low-amplitude peaks that are with relative amplitudes between multiplet members, depends on
combination frequencies in this sdB starfif is pre-whitened, its the number of multiples of the Nyquist frequency crossed, the am-
alias multiplet disappears from panel (b); what remains is visible plitude of the sampling modulation and the observational time-span
in panel (d) and includes those combination frequencies. Finally, of the data.
those combination frequencies have Nyquist aliases of their own, We have theoretically derived the expected shapes of the alias
but since those (real) combination frequencies are so low in intrinsic multiplets and shown that the observed patterns are in agreement
amplitude, their Nyquist aliases just contribute to the noise left in with the theory. We investigated the shape as a function of the
panel (c) — Baran et al. noticed and commented upon this increasedhumber of multiples of the Nyquist frequency crossed, and obtained
noise, describing it as ‘low-amplitude complex signal’. the following results. In reakepler LC data, where noise is small
What we are seeing is two sets of frequencigsa(fid the combi-  but none the less present, the Nyquist aliases are splitinto multiplets
nation frequencies) that lie almost equidistant from and on opposite whose members number 2n1, wherenis the number of multiples
sides of the SC Nyquist frequency, such that the aliases of one setof the Nyquist frequency crossed. In the SC case, multiplicity is
fall right next to the real frequency of the other set, and vice versa. substantially higher and amplitudes are further reduced. Multiplet
Panel (b) in particular highlights how easily these Nyquist aliases members are equally separated in frequency by the orbital frequency
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of the satellite in both cadences. The shape of the multiplet is Research project. We thank P. Degroote and S. Bloemen for their
independent of the actual pulsation frequency. useful comments.
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